We propose in this paper efficient first/second-order time-stepping schemes for the evolutional Navier-Stokes-Nernst-Planck-Poisson equations. The proposed schemes are constructed using an auxiliary variable reformulation and sophisticated treatment of the terms coupling different equations. By introducing a dynamic equation for the auxiliary variable and reformulating the original equations into an equivalent system, we construct first- and second-order semi-implicit linearized schemes for the underlying problem. The main advantages of the proposed method are: (1) the schemes are unconditionally stable in the sense that a discrete energy keeps decay during the time stepping; (2) the concentration components of the discrete solution preserve positivity and mass conservation; (3) the delicate implementation shows that the proposed schemes can be very efficiently realized, with computational complexity close to a semi-implicit scheme. Some numerical examples are presented to demonstrate the accuracy and performance of the proposed method. As far as the best we know, this is the first second-order method which satisfies all the above properties for the Navier-Stokes-Nernst-Planck-Poisson equations.


翻译:我们在本文件中为进化纳维埃-Stokes-Nernst-Planck-Poisson等式提出了高效的一级/二级时间步骤计划。拟议方案是使用辅助变量重新拟订和复杂地处理将不同等式组合起来的术语来构建的。通过为辅助变量引入动态方程式并将原始方程式重新制成一个对等系统,我们为根本问题构建了一级和二级半线性半线性计划。拟议方法的主要优点是:(1) 计划无条件稳定,因为离散能源在时间步骤期间会不断衰变;(2) 离散溶液的集中部分保存着假定性和大规模保护;(3) 微妙的实施表明,拟议的计划可以非常高效地实现,而计算复杂性接近于一个半不透明的办法。我们提出了一些数字例子,以表明拟议方法的准确性和性。据我们所知,这是满足Navier-Stokes-Nernst-Planc-Poisson等式等式所有上述特性的第二级方法。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Relative Sparsity for Medical Decision Problems
Arxiv
0+阅读 · 2023年3月31日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员