Training machines to synthesize diverse handwritings is an intriguing task. Recently, RNN-based methods have been proposed to generate stylized online Chinese characters. However, these methods mainly focus on capturing a person's overall writing style, neglecting subtle style inconsistencies between characters written by the same person. For example, while a person's handwriting typically exhibits general uniformity (e.g., glyph slant and aspect ratios), there are still small style variations in finer details (e.g., stroke length and curvature) of characters. In light of this, we propose to disentangle the style representations at both writer and character levels from individual handwritings to synthesize realistic stylized online handwritten characters. Specifically, we present the style-disentangled Transformer (SDT), which employs two complementary contrastive objectives to extract the style commonalities of reference samples and capture the detailed style patterns of each sample, respectively. Extensive experiments on various language scripts demonstrate the effectiveness of SDT. Notably, our empirical findings reveal that the two learned style representations provide information at different frequency magnitudes, underscoring the importance of separate style extraction. Our source code is public at: https://github.com/dailenson/SDT.
翻译:训练机器合成多样的手写体是一个引人入胜的任务。最近,基于RNN的方法已经被提出来生成具有表现力的在线中文字符。然而,这些方法主要集中于捕捉一个人的整体书写风格,忽略了同一人写的不同字符之间的细微风格差异。例如,虽然一个人的手写通常表现出一般的一致性(例如,字符斜率和长宽比),但是在字符的细节(例如,笔画长度和曲率)中仍然存在小的风格变化。基于此,我们提出从个性化手写中在书写者和字符级别上分离风格表示以合成逼真的风格化在线手写字符。具体而言,我们提出了风格分离Transformer(SDT),它采用两个互补的对比目标,分别从参考样本中提取风格共同性和捕捉每个样本的详细风格模式。在各种语言脚本上的广泛实验表明了SDT的有效性。值得注意的是,我们的实证研究揭示了这两个学习到的风格表示在不同的频率幅度上提供信息,强调了分离风格提取的重要性。我们的源代码公开在:https://github.com/dailenson/SDT。