Existing pedestrian attribute recognition (PAR) algorithms are mainly developed based on a static image. However, the performance is not reliable for images with challenging factors, such as heavy occlusion, motion blur, etc. In this work, we propose to understand human attributes using video frames that can make full use of temporal information. Specifically, we formulate the video-based PAR as a vision-language fusion problem and adopt pre-trained big models CLIP to extract the feature embeddings of given video frames. To better utilize the semantic information, we take the attribute list as another input and transform the attribute words/phrase into the corresponding sentence via split, expand, and prompt. Then, the text encoder of CLIP is utilized for language embedding. The averaged visual tokens and text tokens are concatenated and fed into a fusion Transformer for multi-modal interactive learning. The enhanced tokens will be fed into a classification head for pedestrian attribute prediction. Extensive experiments on a large-scale video-based PAR dataset fully validated the effectiveness of our proposed framework.


翻译:现有的行人属性识别(PAR)算法主要基于静态图像开发。然而,对于具有挑战性因素的图像,如严重遮挡、运动模糊等,性能不可靠。在这项工作中,我们提出使用视频帧来理解人类属性,这可以充分利用时间信息。具体而言,我们将基于视频的PAR作为视觉语言融合问题,并采用预训练的大模型CLIP来提取给定视频帧的特征嵌入。为了更好地利用语义信息,我们将属性列表作为另一种输入,并通过分裂、扩展和提示将属性词/短语转换为相应的句子。然后,利用CLIP的文本编码器进行语言嵌入。平均视觉标记和文本标记被连接并输入融合变压器进行多模态交互式学习。增强的标记将被馈入用于行人属性预测的分类头。在大规模基于视频的PAR数据集上的广泛实验充分验证了我们提出的框架的有效性。

0
下载
关闭预览

相关内容

CVPR2022 | 多模态Transformer用于视频分割效果惊艳
专知会员服务
41+阅读 · 2022年3月12日
UIUC韩家炜:从海量非结构化文本中挖掘结构化知识
专知会员服务
97+阅读 · 2021年12月30日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年12月9日
VIP会员
相关VIP内容
CVPR2022 | 多模态Transformer用于视频分割效果惊艳
专知会员服务
41+阅读 · 2022年3月12日
UIUC韩家炜:从海量非结构化文本中挖掘结构化知识
专知会员服务
97+阅读 · 2021年12月30日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员