论文题目:COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for Cross-Modal Retrieval

作者:卢浩宇,费楠益,霍宇琦,高一钊,卢志武,文继荣

通讯作者:卢志武

论文概述:大规模的单塔预训练模型,在跨模态检索中取得惊人的检索效果。遗憾的是,由于它们大多采用耗时的实参跨模态交互方式,检索效率非常低。最近,像CLIP和ALIGN这样具有高推理效率的双塔模型也表现出了良好的效果,然而,它们只考虑了模态之间的实例级对齐(因此仍有改进的余地)。为了克服这些限制,我们提出了一个新颖的协同式双塔视觉语言预训练模型,简称为COTS。总的来说,我们提出的COTS是通过加强模态间的交互来提高图像-文本检索效果的。

除了通过动量对比学习进行实例级的对齐之外,我们还提出了两种额外的跨模态交互。(1)Token级的交互—在不使用实参交互模型的情况下,我们设计了一个遮蔽视觉语言建模(MVLM)的学习目标,其中变分自编码器用于视觉编码,可为每个图像生成视觉token级别的标记。(2)任务级的交互—在文本到图像和图像到文本的检索任务之间设计了一个KL-对齐学习目标,其中每个任务的概率分布是用动量对比学习中的负样本队列计算的。在公平比较下,我们提出的COTS在所有双塔方法中取得了最好的结果,与最新的单塔方法相比,COTS表现出相当的能力(但推理速度快10,800倍)。同时,我们提出的COTS也适用于从文本到视频的检索,在广泛使用的MSR-VTT数据集上取得了目前最好的结果。

成为VIP会员查看完整内容
13

相关内容

CVPR 2022 将于2022年 6 月 21-24 日在美国的新奥尔良举行。CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议,会议的主要内容是计算机视觉与模式识别技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
32+阅读 · 2022年3月12日
【CVPR2022】高分辨率和多样化的视频-文本预训练模型
专知会员服务
10+阅读 · 2022年3月6日
【ICCV2021】多层次对比学习的跨模态检索方法
专知会员服务
23+阅读 · 2021年10月24日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
26+阅读 · 2021年1月29日
首个视觉-语言预训练综述来了!
夕小瑶的卖萌屋
8+阅读 · 2022年3月29日
AAAI2022 预训练中的多模态信息融合与表征探究
RUC AI Box
3+阅读 · 2022年3月15日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
CVPR 2020 | 细粒度文本视频跨模态检索
AI科技评论
17+阅读 · 2020年3月24日
文本+视觉,多篇 Visual/Video BERT 论文介绍
AI科技评论
22+阅读 · 2019年8月30日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
32+阅读 · 2022年3月12日
【CVPR2022】高分辨率和多样化的视频-文本预训练模型
专知会员服务
10+阅读 · 2022年3月6日
【ICCV2021】多层次对比学习的跨模态检索方法
专知会员服务
23+阅读 · 2021年10月24日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
26+阅读 · 2021年1月29日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员