We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.
翻译:我们提议GAN-Supervised Learning(GAN-Supervised Learning),这是学习歧视模型及其GAN产生的培训数据的一个框架,最终到最后联合学习。我们用我们的框架来应对密集的视觉匹配问题。在经典的 Congealing 方法的启发下,我们的GANgealing算法训练了一个空间变异器,从一个接受过不匹配数据培训的GAN随机样本到一个共同的、共同获得的目标模式。我们展示了八个数据集的结果,这八个数据集都表明我们的方法成功地对复杂的数据进行了匹配并发现了密集的通信。GANgeealing(GAN)大大优于过去自我监督的通信算法,并在几个数据集上与(有时超过)最先进的监控的通信算法同时进行(不使用任何通信监督或数据增强,尽管只接受过关于GAN生成数据的培训。为了精确的通信,我们用多达3美元的时间改进了最先进的监控方法。我们展示了我们用于下游GAN培训的图像数据集的强化现实、图像编辑和自动预处理方法的应用。