In this paper, we propose a novel approach for few-shot semantic segmentation with sparse labeled images. We investigate the effectiveness of our method, which is based on the Model-Agnostic Meta-Learning (MAML) algorithm, in the medical scenario, where the use of sparse labeling and few-shot can alleviate the cost of producing new annotated datasets. Our method uses sparse labels in the meta-training and dense labels in the meta-test, thus making the model learn to predict dense labels from sparse ones. We conducted experiments with four Chest X-Ray datasets to evaluate two types of annotations (grid and points). The results show that our method is the most suitable when the target domain highly differs from source domains, achieving Jaccard scores comparable to dense labels, using less than 2% of the pixels of an image with labels in few-shot scenarios.
翻译:在本文中,我们提出了一种新颖的方法,用于使用少发的语义分解,加上少贴标签的图像。我们调查了我们的方法的有效性,我们的方法基于模型-不可知元学习算法(MAML),在医学情景中,使用稀释标签和少发照片可以降低产生新的附加说明数据集的成本。我们的方法在元测试中采用元培训和密集标签中的稀释标签,从而让模型学会从稀释的标签中预测密度的标签。我们用四个Chest X光数据集进行了实验,以评价两种批注(电网和点 ) 。结果显示,当目标领域与源域有很大差异时,我们的方法是最合适的方法,用不到2%的带有少量标签的图像像素来达到与密度标签相似的雅卡卡分数。