The ability to create realistic, animatable and relightable head avatars from casual video sequences would open up wide ranging applications in communication and entertainment. Current methods either build on explicit 3D morphable meshes (3DMM) or exploit neural implicit representations. The former are limited by fixed topology, while the latter are non-trivial to deform and inefficient to render. Furthermore, existing approaches entangle lighting in the color estimation, thus they are limited in re-rendering the avatar in new environments. In contrast, we propose PointAvatar, a deformable point-based representation that disentangles the source color into intrinsic albedo and normal-dependent shading. We demonstrate that PointAvatar bridges the gap between existing mesh- and implicit representations, combining high-quality geometry and appearance with topological flexibility, ease of deformation and rendering efficiency. We show that our method is able to generate animatable 3D avatars using monocular videos from multiple sources including hand-held smartphones, laptop webcams and internet videos, achieving state-of-the-art quality in challenging cases where previous methods fail, e.g., thin hair strands, while being significantly more efficient in training than competing methods.


翻译:从随意视频序列创造现实、可想象和可点亮的头动动能的能力将打开通信和娱乐的广泛应用。当前的方法要么建立在直立的 3D 可变模贝贝(3DMM) 上,要么利用神经隐含的表达方式。前者受固定的地形的限制,而后者则不易变形,效率低下。此外,在彩色估计中,现有的方法将光线缠绕在一起,因此这些方法在新环境中重新复制阿凡达时是有限的。相比之下,我们提出PointAvatar,一个基于点的变形代表方式,将源颜色分解成内在的阿尔贝多和正常依赖的阴影。我们证明,PointAvatar弥合了现有网形和隐含的表达方式之间的差距,将高质量的几何和外观与地形灵活性、易变形和提高效率相结合。我们表明,我们的方法能够利用多种来源的单色视频生成可计量的3Datars,包括手持智能手机、笔记式网络摄像头和互联网视频,从而将源的颜色分解为内在的反射线,将源颜色分解为内在的反射线和正常的阴影和正常的阴影。我们证明可以将现有的网状质量在前几级上都比较有挑战性地进行竞争性地进行。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员