A fundamental task in robotics is to navigate between two locations. In particular, real-world navigation can require long-horizon planning using high-dimensional RGB images, which poses a substantial challenge for end-to-end learning-based approaches. Current semi-parametric methods instead achieve long-horizon navigation by combining learned modules with a topological memory of the environment, often represented as a graph over previously collected images. However, using these graphs in practice typically involves tuning a number of pruning heuristics to avoid spurious edges, limit runtime memory usage and allow reasonably fast graph queries. In this work, we present One-4-All (O4A), a method leveraging self-supervised and manifold learning to obtain a graph-free, end-to-end navigation pipeline in which the goal is specified as an image. Navigation is achieved by greedily minimizing a potential function defined continuously over the O4A latent space. Our system is trained offline on non-expert exploration sequences of RGB data and controls, and does not require any depth or pose measurements. We show that O4A can reach long-range goals in 8 simulated Gibson indoor environments, and further demonstrate successful real-world navigation using a Jackal UGV platform.
翻译:机器人的一个基本任务是在两个地点之间航行。 特别是,现实世界导航可能需要使用高维的 RGB 图像进行长视距规划,这对端到端的学习方法构成巨大的挑战。 目前的半参数方法通过将学习的模块与环境的地形内存结合起来实现长视距导航,通常以图示形式代表于先前收集的图像。 然而,在实际中,使用这些图表通常需要调整一些修剪的螺旋体,以避免产生虚假的边缘,限制运行时间记忆的使用,并允许合理快速的图形查询。 在这项工作中,我们展示了1-4全(O4A),一种利用自上和多功能学习的方法,以获得一个无图形的、端到端的导航管道,其中将目标指定为图像。导航是通过贪婪地尽量减少在O4A潜藏空间上持续界定的潜在功能来实现的。 我们的系统在离线上受过关于RGB数据和控制的非专家探索序列的培训,不需要任何深度或面貌更深的测量。 我们显示,O4A能够利用8号模拟全球轨道环境实现远程导航目标。</s>