The benefit of multi-task learning over single-task learning relies on the ability to use relations across tasks to improve performance on any single task. While sharing representations is an important mechanism to share information across tasks, its success depends on how well the structure underlying the tasks is captured. In some real-world situations, we have access to metadata, or additional information about a task, that may not provide any new insight in the context of a single task setup alone but inform relations across multiple tasks. While this metadata can be useful for improving multi-task learning performance, effectively incorporating it can be an additional challenge. We posit that an efficient approach to knowledge transfer is through the use of multiple context-dependent, composable representations shared across a family of tasks. In this framework, metadata can help to learn interpretable representations and provide the context to inform which representations to compose and how to compose them. We use the proposed approach to obtain state-of-the-art results in Meta-World, a challenging multi-task benchmark consisting of 50 distinct robotic manipulation tasks.
翻译:多任务学习对单一任务学习的好处取决于利用不同任务之间的关系来改进任何单一任务业绩的能力。虽然共享代表是分享不同任务信息的重要机制,但成功与否取决于如何很好地抓住任务所依据的结构。在某些现实世界的情况下,我们能够获得元数据或关于任务的额外信息,这在单一任务设置方面可能无法提供任何新的洞察力,但为跨多重任务的关系提供信息。虽然这一元数据对于改进多任务学习业绩可能有用,但有效地纳入它可能是一项额外挑战。我们认为,知识转让的有效方法是通过使用多种背景的、可兼容的表达方式,在一个任务组合中共享。在这个框架内,元数据可以帮助学习可解释的表达方式,并为哪些表达方式和如何构建这些表达方式提供信息。我们使用拟议方法在Meta-World获得最新的结果,这是一个具有挑战性的多任务基准,由50项不同的机器人操纵任务组成。