Entity alignment is a viable means for integrating heterogeneous knowledge among different knowledge graphs (KGs). Recent developments in the field often take an embedding-based approach to model the structural information of KGs so that entity alignment can be easily performed in the embedding space. However, most existing works do not explicitly utilize useful relation representations to assist in entity alignment, which, as we will show in the paper, is a simple yet effective way for improving entity alignment. This paper presents a novel joint learning framework for entity alignment. At the core of our approach is a Graph Convolutional Network (GCN) based framework for learning both entity and relation representations. Rather than relying on pre-aligned relation seeds to learn relation representations, we first approximate them using entity embeddings learned by the GCN. We then incorporate the relation approximation into entities to iteratively learn better representations for both. Experiments performed on three real-world cross-lingual datasets show that our approach substantially outperforms state-of-the-art entity alignment methods.

3
下载
关闭预览

相关内容

实体对齐(Entity Alignment)也被称作实体匹配(Entity Matching),是指对于异构数据源知识库中的各个实体,找出属于现实世界中的同一实体。 实体对齐常用的方法是利用实体的属性信息判定不同源实体是否可进行对齐。

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

0
26
下载
预览

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

0
7
下载
预览

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

0
9
下载
预览

We present a new local entity disambiguation system. The key to our system is a novel approach for learning entity representations. In our approach we learn an entity aware extension of Embedding for Language Model (ELMo) which we call Entity-ELMo (E-ELMo). Given a paragraph containing one or more named entity mentions, each mention is first defined as a function of the entire paragraph (including other mentions), then they predict the referent entities. Utilizing E-ELMo for local entity disambiguation, we outperform all of the state-of-the-art local and global models on the popular benchmarks by improving about 0.5\% on micro average accuracy for AIDA test-b with Yago candidate set. The evaluation setup of the training data and candidate set are the same as our baselines for fair comparison.

0
3
下载
预览

We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.

0
33
下载
预览

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

0
38
下载
预览

Neural language representation models such as BERT pre-trained on large-scale corpora can well capture rich semantic patterns from plain text, and be fine-tuned to consistently improve the performance of various NLP tasks. However, the existing pre-trained language models rarely consider incorporating knowledge graphs (KGs), which can provide rich structured knowledge facts for better language understanding. We argue that informative entities in KGs can enhance language representation with external knowledge. In this paper, we utilize both large-scale textual corpora and KGs to train an enhanced language representation model (ERNIE), which can take full advantage of lexical, syntactic, and knowledge information simultaneously. The experimental results have demonstrated that ERNIE achieves significant improvements on various knowledge-driven tasks, and meanwhile is comparable with the state-of-the-art model BERT on other common NLP tasks. The source code of this paper can be obtained from https://github.com/thunlp/ERNIE.

0
4
下载
预览

Knowledge representation learning (KRL) aims to represent entities and relations in knowledge graph in low-dimensional semantic space, which have been widely used in massive knowledge-driven tasks. In this article, we introduce the reader to the motivations for KRL, and overview existing approaches for KRL. Afterwards, we extensively conduct and quantitative comparison and analysis of several typical KRL methods on three evaluation tasks of knowledge acquisition including knowledge graph completion, triple classification, and relation extraction. We also review the real-world applications of KRL, such as language modeling, question answering, information retrieval, and recommender systems. Finally, we discuss the remaining challenges and outlook the future directions for KRL. The codes and datasets used in the experiments can be found in https://github.com/thunlp/OpenKE.

0
26
下载
预览

Many question answering systems over knowledge graphs rely on entity and relation linking components in order to connect the natural language input to the underlying knowledge graph. Traditionally, entity linking and relation linking have been performed either as dependent sequential tasks or as independent parallel tasks. In this paper, we propose a framework called EARL, which performs entity linking and relation linking as a joint task. EARL implements two different solution strategies for which we provide a comparative analysis in this paper: The first strategy is a formalisation of the joint entity and relation linking tasks as an instance of the Generalised Travelling Salesman Problem (GTSP). In order to be computationally feasible, we employ approximate GTSP solvers. The second strategy uses machine learning in order to exploit the connection density between nodes in the knowledge graph. It relies on three base features and re-ranking steps in order to predict entities and relations. We compare the strategies and evaluate them on a dataset with 5000 questions. Both strategies significantly outperform the current state-of-the-art approaches for entity and relation linking.

0
4
下载
预览

A visual-relational knowledge graph (KG) is a multi-relational graph whose entities are associated with images. We introduce ImageGraph, a KG with 1,330 relation types, 14,870 entities, and 829,931 images. Visual-relational KGs lead to novel probabilistic query types where images are treated as first-class citizens. Both the prediction of relations between unseen images and multi-relational image retrieval can be formulated as query types in a visual-relational KG. We approach the problem of answering such queries with a novel combination of deep convolutional networks and models for learning knowledge graph embeddings. The resulting models can answer queries such as "How are these two unseen images related to each other?" We also explore a zero-shot learning scenario where an image of an entirely new entity is linked with multiple relations to entities of an existing KG. The multi-relational grounding of unseen entity images into a knowledge graph serves as the description of such an entity. We conduct experiments to demonstrate that the proposed deep architectures in combination with KG embedding objectives can answer the visual-relational queries efficiently and accurately.

0
9
下载
预览
小贴士
相关论文
Hongwei Wang,Hongyu Ren,Jure Leskovec
26+阅读 · 2020年2月17日
Guanglin Niu,Yongfei Zhang,Bo Li,Peng Cui,Si Liu,Jingyang Li,Xiaowei Zhang
7+阅读 · 2019年12月28日
Representation Learning with Ordered Relation Paths for Knowledge Graph Completion
Yao Zhu,Hongzhi Liu,Zhonghai Wu,Yang Song,Tao Zhang
9+阅读 · 2019年9月26日
Hamed Shahbazi,Xiaoli Z. Fern,Reza Ghaeini,Rasha Obeidat,Prasad Tadepalli
3+阅读 · 2019年8月22日
Qingheng Zhang,Zequn Sun,Wei Hu,Muhao Chen,Lingbing Guo,Yuzhong Qu
33+阅读 · 2019年6月6日
Deepak Nathani,Jatin Chauhan,Charu Sharma,Manohar Kaul
38+阅读 · 2019年6月4日
Zhengyan Zhang,Xu Han,Zhiyuan Liu,Xin Jiang,Maosong Sun,Qun Liu
4+阅读 · 2019年5月17日
Knowledge Representation Learning: A Quantitative Review
Yankai Lin,Xu Han,Ruobing Xie,Zhiyuan Liu,Maosong Sun
26+阅读 · 2018年12月28日
EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs
Mohnish Dubey,Debayan Banerjee,Debanjan Chaudhuri,Jens Lehmann
4+阅读 · 2018年6月25日
Daniel Oñoro-Rubio,Mathias Niepert,Alberto García-Durán,Roberto González,Roberto J. López-Sastre
9+阅读 · 2018年3月31日
相关VIP内容
专知会员服务
81+阅读 · 2020年3月18日
专知会员服务
48+阅读 · 2019年12月22日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
37+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
6+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
21+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
24+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
16+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
9+阅读 · 2017年9月24日
Top