A metric tensor for Riemann manifold Monte Carlo particularly suited for non-linear Bayesian hierarchical models is proposed. The metric tensor is built from here proposed symmetric positive semidefinite log-density gradient covariance (LGC) matrices. The LGCs measure the joint information content and dependence structure of both a random variable and the parameters of said variable. The proposed methodology is highly automatic and allows for exploitation of any sparsity associated with the model in question. When implemented in conjunction with a Riemann manifold variant of the recently proposed numerical generalized randomized Hamiltonian Monte Carlo processes, the proposed methodology is highly competitive, in particular for the more challenging target distributions associated with Bayesian hierarchical models.
翻译:提出了适合非线性贝叶斯人等级模型的Riemann Mentro Monte Carlo 的强压度指标; 提出了用于非线性Bayesian 等级模型的强压度指标; 提出了对称正半无限制日志密度梯度共差(LGC)矩阵; 测算随机变量和上述变量参数的联合信息内容和依赖结构; 拟议的方法高度自动,可以利用与该模型有关的任何偏差; 与最近提议的数字通用的汉密尔顿-蒙特卡洛进程Riemann多元变量一起实施时,拟议的方法具有很高的竞争力, 特别是针对与贝叶斯人等级模型相关的更具挑战性的目标分布。