We study numerical methods for solving a system of quasilinear stochastic partial differential equations known as the stochastic Landau-Lifshitz-Bloch (LLB) equation on a bounded domain in $\mathbb R^d$ for $d=1,2$. Our main results are estimates of the rate of convergence of the Finite Element Method to the solutions of stochastic LLB. To overcome the lack of regularity of the solution in the case $d=2$, we propose a Finite Element scheme for a regularised version of the equation. We then obtain error estimates of numerical solutions and for the solution of the regularised equation as well as the rate of convergence of this solution to the solution of the stochastic LLB equation. As a consequence, the convergence in probability of the approximate solutions to the solution of the stochastic LLB equation is derived. To the best of our knowledge this is the first result on error estimates for a system of stochastic quasilinear partial differential equations. A stronger result is obtained in the case $d=1$ due to a new regularity result for the LLB equation which allows us to avoid regularisation.
翻译:我们研究用数字方法解决半线性软体部分差异方程式系统,称为Landau-Lifshitz-Bloch(LLB)等式,在以$mathbb R ⁇ d$=1,2美元为单位的封闭域域内,以美元=1,2美元为单位。我们的主要结果是,Finite Element 方法与Stochachistic LLB 等式解决办法的趋同率估计值。为了克服本案中解决办法的不合时宜性,我们提议了一个固定化方程式的微量元素方案。我们随后获得了数字解决方案和正规化方程式解决办法的误差估计值,以及这种解决办法与SmatchbRalb等式解决办法的趋同率。结果是,微量性液化液化方程式的近似解决办法与溶解率的趋同率。据我们所知,这是Stochatictic准线性部分差异方程式系统误差的第一个结果。我们得到了更强烈的结果,因为在案件中,美元=1美元使常规方程式得以避免新等式。