Variational Autoencoders (VAEs) have recently been highly successful at imputing and acquiring heterogeneous missing data. However, within this specific application domain, existing VAE methods are restricted by using only one layer of latent variables and strictly Gaussian posterior approximations. To address these limitations, we present HH-VAEM, a Hierarchical VAE model for mixed-type incomplete data that uses Hamiltonian Monte Carlo with automatic hyper-parameter tuning for improved approximate inference. Our experiments show that HH-VAEM outperforms existing baselines in the tasks of missing data imputation and supervised learning with missing features. Finally, we also present a sampling-based approach for efficiently computing the information gain when missing features are to be acquired with HH-VAEM. Our experiments show that this sampling-based approach is superior to alternatives based on Gaussian approximations.
翻译:最近,变式自动编码器(VAE)在估算和获取各种缺失数据方面非常成功。然而,在这一具体应用领域,现有的VAE方法仅使用一层潜伏变量和严格的高山后子近似值而受到限制。为了解决这些局限性,我们介绍了HH-VAEM,这是使用汉密尔顿·蒙特卡洛(Hamiltonian Monte Carlo)进行自动超参数调以改进近似推理的混合不完整数据的等级式VAE模型。我们的实验显示,HH-VAEM在缺失数据估算和有缺失特征的监督下学习任务方面比现有基线要好。最后,我们还介绍了一种基于取样的方法,以便在用H-VAEM(H-VAEM)获取缺失特征时高效计算信息收益。我们的实验表明,这种基于取样的方法优于基于高斯近似值的替代品。