We prove an optimal mixing time bound on the single-site update Markov chain known as the Glauber dynamics or Gibbs sampling in a variety of settings. Our work presents an improved version of the spectral independence approach of Anari et al. (2020) and shows $O(n\log{n})$ mixing time on any $n$-vertex graph of bounded degree when the maximum eigenvalue of an associated influence matrix is bounded. As an application of our results, for the hard-core model on independent sets weighted by a fugacity $\lambda$, we establish $O(n\log{n})$ mixing time for the Glauber dynamics on any $n$-vertex graph of constant maximum degree $\Delta$ when $\lambda<\lambda_c(\Delta)$ where $\lambda_c(\Delta)$ is the critical point for the uniqueness/non-uniqueness phase transition on the $\Delta$-regular tree. More generally, for any antiferromagnetic 2-spin system we prove $O(n\log{n})$ mixing time of the Glauber dynamics on any bounded degree graph in the corresponding tree uniqueness region. Our results apply more broadly; for example, we also obtain $O(n\log{n})$ mixing for $q$-colorings of triangle-free graphs of maximum degree $\Delta$ when the number of colors satisfies $q > \alpha \Delta$ where $\alpha \approx 1.763$, and $O(m\log{n})$ mixing for generating random matchings of any graph with bounded degree and $m$ edges.


翻译:最优Glauber动力学混合:通过高维展开进行熵因子分解。我们在各种设置中证明了一个单点更新马尔可夫链(Glauber动力学或Gibbs采样)的最优混合时间上界。我们提出了Anari等人(2020)的谱独立方法的改进版本,并证明了当相关的影响矩阵的最大特征值受限时,在任何n个顶点和有界度数的图上的混合时间为$O(n\log{n})$。作为我们结果的一个应用,对于用一个熔度$\lambda$加权的独立集的硬核模型,当$\lambda<\lambda_c(\Delta)$时,在任何常数最大度数$\Delta$的n个顶点的图上,我们建立了Glauber动力学的$O(n\log{n})$混合时间,其中$\lambda_c(\Delta)$是$\Delta$-正则树上唯一性/非唯一性相变的临界点。更普遍地,对于任何反铁磁2自旋系统,在相应树的唯一性区域内,我们证明了在任何有界度数的图上Glauber动力学的$O(n\log{n})$混合时间。我们的结果更广泛地应用,例如当颜色数量满足$q>\alpha\Delta$(其中$\alpha\approx1.763$)时,我们还获得了最大度数$\Delta$且免于三角形的图的$q$-着色的$O(n\log{n})$混合,以及任何度数有限且有$m$条边的图的生成随机匹配的$O(m\log{n})$混合。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
图神经网络理论基础 | 谱图理论 Ch1: Introduction
图与推荐
1+阅读 · 2022年8月18日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员