In order to optimally design materials, it is crucial to understand the structure-property relations in the material by analyzing the effect of microstructure parameters on the macroscopic properties. In computational homogenization, the microstructure is thus explicitly modeled inside the macrostructure, leading to a coupled two-scale formulation. Unfortunately, the high computational costs of such multiscale simulations often render the solution of design, optimization, or inverse problems infeasible. To address this issue, we propose in this work a non-intrusive reduced basis method to construct inexpensive surrogates for parametrized microscale problems; the method is specifically well-suited for multiscale simulations since the coupled simulation is decoupled into two independent problems: (1) solving the microscopic problem for different (loading or material) parameters and learning a surrogate model from the data; and (2) solving the macroscopic problem with the learned material model. The proposed method has three key features. First, the microscopic stress field can be fully recovered. Second, the method is able to accurately predict the stress field for a wide range of material parameters; furthermore, the derivatives of the effective stress with respect to the material parameters are available and can be readily utilized in solving optimization problems. Finally, it is more data efficient, i.e. requiring less training data, as compared to directly performing a regression on the effective stress. For the microstructures in the two test problems considered, the mean approximation error of the effective stress is as low as 0.1% despite using a relatively small training dataset. Embedded into the macroscopic problem, the reduced order model leads to an online speed up of approximately three orders of magnitude while maintaining a high accuracy as compared to the FE$^2$ solver.


翻译:为了优化设计材料,至关重要的是要通过分析微结构参数对宏观同质特性的影响来理解材料的结构-财产关系。 在计算同质化中,微结构因此在宏观结构中被明确建模,导致两个尺度的配制。不幸的是,这种多尺度模拟的高计算成本往往使得设计、优化或反向问题的解决方案变得不可行。为了解决这一问题,我们在此工作中建议采用一种非侵入性减少的基础方法,为对准流缩微尺度问题建立廉价的代谢器;在计算时,该方法特别适合于多尺度模拟,因为同时的模拟被分解成两个独立的问题:(1) 解决不同(装载或材料)参数的微孔问题,并从数据中学习一个隐形模型;(2) 解决与所学材料模型有关的宏观问题。为了解决这个问题,我们建议的方法有三个关键特征。首先,小成本压力字段可以完全恢复。第二,该方法能够精确地预测多尺度的代向上轨道的代谢,因为对于一个较有效精度的缩缩略度的缩略度,最终将数据的缩略度用于对数值的缩微的缩缩缩缩缩图的缩定义进行预测。最后,在使用数据压力中可以使数据压力下调中,对数据进行较易的缩压进行数据的缩缩压的缩压进行。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员