We are interested in renewable estimation and algorithms for nonparametric models with streaming data. We express the parameter of interest through a functional depending on a weight function and a conditional distribution function (CDF). By renewable kernel estimations combined with function interpolations, we obtain renewable estimator for the CDF and propose the method of renewable weighted composite quantile regression (WCQR). By fully using the model structure, we propose new weight selectors, by which the WCQR can achieve asymptotic unbiasness when estimating specific functions in the model. We also propose practical bandwidth selectors for streaming data and find the optimal weight function minimizing the asymptotic variance. Our asymptotical results show that our estimator is almost equivalent to the oracle estimator obtained from the entire data together. And our method also enjoys adaptiveness to error distributions, robustness to outliers, and efficiency in both estimation and computation. Simulation studies and real data analyses further comfirm our theoretical findings.
翻译:我们感兴趣的是具有流数据的非对称模型的可再生估计和算法。我们通过根据重量函数和有条件分布函数(CDF)的功能来表达感兴趣的参数。通过可再生内核估计加上函数间推,我们获得了CDF的可再生估计值,并提出了可再生加权复合微量回归法(WCQR)。通过充分利用模型结构,我们提出了新的加权选择器,使WCQR在估计模型中的具体函数时能够实现无症状的不偏差。我们还为流数据提出了实用的带宽选择器,并找到了最佳的重量函数,以尽量减少无症状差异。我们的随机结果显示,我们的估计值几乎相当于从整个数据中得出的甲骨座估计值。我们的方法还适应了错误分布、对外部值的坚固度以及估算和计算的效率。模拟研究和真实数据分析进一步证实了我们的理论结论。