We are interested in renewable estimation and algorithms for nonparametric models with streaming data. We express the parameter of interest through a functional depending on a weight function and a conditional distribution function (CDF). By renewable kernel estimations combined with function interpolations, we obtain renewable estimator for the CDF and propose the method of renewable weighted composite quantile regression (WCQR). By fully using the model structure, we propose new weight selectors, by which the WCQR can achieve asymptotic unbiasness when estimating specific functions in the model. We also propose practical bandwidth selectors for streaming data and find the optimal weight function minimizing the asymptotic variance. Our asymptotical results show that our estimator is almost equivalent to the oracle estimator obtained from the entire data together. And our method also enjoys adaptiveness to error distributions, robustness to outliers, and efficiency in both estimation and computation. Simulation studies and real data analyses further comfirm our theoretical findings.


翻译:我们感兴趣的是具有流数据的非对称模型的可再生估计和算法。我们通过根据重量函数和有条件分布函数(CDF)的功能来表达感兴趣的参数。通过可再生内核估计加上函数间推,我们获得了CDF的可再生估计值,并提出了可再生加权复合微量回归法(WCQR)。通过充分利用模型结构,我们提出了新的加权选择器,使WCQR在估计模型中的具体函数时能够实现无症状的不偏差。我们还为流数据提出了实用的带宽选择器,并找到了最佳的重量函数,以尽量减少无症状差异。我们的随机结果显示,我们的估计值几乎相当于从整个数据中得出的甲骨座估计值。我们的方法还适应了错误分布、对外部值的坚固度以及估算和计算的效率。模拟研究和真实数据分析进一步证实了我们的理论结论。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月6日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员