Despite their success deep neural networks (DNNs) are still largely considered as black boxes. The main issue is that the linear and non-linear operations are entangled in every layer, making it hard to interpret the hidden layer outputs. In this paper, we look at DNNs with rectified linear units (ReLUs), and focus on the gating property (`on/off' states) of the ReLUs. We extend the recently developed dual view in which the computation is broken path-wise to show that learning in the gates is more crucial, and learning the weights given the gates is characterised analytically via the so called neural path kernel (NPK) which depends on inputs and gates. In this paper, we present novel results to show that convolution with global pooling and skip connection provide respectively rotational invariance and ensemble structure to the NPK. To address `black box'-ness, we propose a novel interpretable counterpart of DNNs with ReLUs namely deep linearly gated networks (DLGN): the pre-activations to the gates are generated by a deep linear network, and the gates are then applied as external masks to learn the weights in a different network. The DLGN is not an alternative architecture per se, but a disentanglement and an interpretable re-arrangement of the computations in a DNN with ReLUs. The DLGN disentangles the computations into two `mathematically' interpretable linearities (i) the `primal' linearity between the input and the pre-activations in the gating network and (ii) the `dual' linearity in the path space in the weights network characterised by the NPK. We compare the performance of DNN, DGN and DLGN on CIFAR-10 and CIFAR-100 to show that, the DLGN recovers more than $83.5\%$ of the performance of state-of-the-art DNNs. This brings us to an interesting question: `Is DLGN a universal spectral approximator?'


翻译:尽管它们成功的深层神经网络(DNNS)仍然在很大程度上被视为黑盒子。主要问题在于线性和非线性操作在每一个层中被缠绕在一起,使得难以解释隐藏的层输出。在本文件中,我们用纠正的线性单位(ReLUs)来查看DNNS, 并关注ReLUs的“连接/关闭” 属性。我们扩展了最近开发的双向观点,其中计算中断了路径,以显示在大门中学习更为关键,而从分析角度来了解大门的权重:所谓的神经路径内嵌(NPK),因此很难解释隐藏。我们用全球集合和跳连接分别提供旋转的线性单位(ReLUs)来显示RNational性能(DNational-D-D-denti),我们用RLUs(DLGN)来显示一个可以解释的DNNNS值, 向大门的权重,而向门的RentL-L-l-deal-deal-deal-deal-deal-deal-deal-heal comnal Net 网络中,在内部网络中,在内部和内部网络中,在数字内,在数字内应用一个数字内,在内部网络中,在内部解释一个数字内和内部网络中,在数字内,在数字内,在数字内,在数字内,在数字内,在数字内,在数字内,在数字内,在数字内,在数字内,在数字内变。

0
下载
关闭预览

相关内容

一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Arxiv
0+阅读 · 2021年12月5日
Arxiv
3+阅读 · 2018年10月25日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
VIP会员
相关VIP内容
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
相关论文
Arxiv
0+阅读 · 2021年12月5日
Arxiv
3+阅读 · 2018年10月25日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Top
微信扫码咨询专知VIP会员