We establish bi-Lipschitz bounds certifying quasi-universality (universality up to a constant factor) for various distances between Reeb graphs: the interleaving distance, the functional distortion distance, and the functional contortion distance. The definition of the latter distance is a novel contribution, and for the special case of contour trees we also prove strict universality of this distance. Furthermore, we prove that for the special case of merge trees the functional contortion distance coincides with the interleaving distance, yielding universality of all four distances in this case.


翻译:我们为Reeb 图形之间的不同距离建立了双利普施茨界限,以证明准普遍性(普遍程度至一个不变系数):间断距离、功能扭曲距离和功能调和距离。 后一种距离的定义是一种新的贡献,对于等距树的特殊情况,我们也证明了这种距离的严格普遍性。 此外,我们证明,对于合并树木这一特殊情形,功能调和距离与相互交错距离相吻合,从而使得所有四个距离都具有普遍性。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年9月3日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
9+阅读 · 2018年10月24日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员