In this paper we investigate the parameterized complexity for NP-hard graph problems parameterized by a structural parameter modular-width. We develop a recipe that is able to simplify the process of obtaining polynomial Turing compressions for a class of graph problems parameterized by modular-width. Moreover, we prove that several problems, which include \textsc{chromatic number, independent set}, \textsc{Hamiltonian cycle}, etc. have polynomial Turing compressions parameterized by modular-width. In addition, under the assumption that P $\neq$ NP, we provide tight kernels for a few problems such as \textsc{Steiner tree} parameterized by modular-width. Meanwhile, we demonstrate that some problems, which includes \textsc{dominating set}, \textsc{odd cycle transversal}, \textsc{connected vertex cover}, etc. are fixed-parameter tractable parameterized by modular-width.
翻译:在本文中,我们调查了由结构参数模块形宽度参数参数参数化的NP硬图形问题的参数复杂度。 我们开发了一种配方, 能够简化以模块形宽度参数化的图形问题类别获得多边图灵压缩的过程。 此外, 我们证明, 包括\ textsc{ 色号、 独立设置} 、\ textsc{ hmiltonian 周期} 等在内的若干问题, 已经用模块形宽度参数化了多盘调压缩。 此外, 根据P\ neq$ NP的假设, 我们为模块形宽度参数化的几类问题提供紧密的内核。 同时, 我们证明, 包括\ textsc{ 主导设置} 、\ textsc{ od周期反向} 、\ textsc{ 连接的垂直覆盖 等在内的一些问题, 通过模块形宽宽度固定的参数化 。