A statistical attention localization (SAL) method is proposed to facilitate the object classification task in this work. SAL consists of three steps: 1) preliminary attention window selection via decision statistics, 2) attention map refinement, and 3) rectangular attention region finalization. SAL computes soft-decision scores of local squared windows and uses them to identify salient regions in Step 1. To accommodate object of various sizes and shapes, SAL refines the preliminary result and obtain an attention map of more flexible shape in Step 2. Finally, SAL yields a rectangular attention region using the refined attention map and bounding box regularization in Step 3. As an application, we adopt E-PixelHop, which is an object classification solution based on successive subspace learning (SSL), as the baseline. We apply SAL so as to obtain a cropped-out and resized attention region as an alternative input. Classification results of the whole image as well as the attention region are ensembled to achieve the highest classification accuracy. Experiments on the CIFAR-10 dataset are given to demonstrate the advantage of the SAL-assisted object classification method.
翻译:为便利这项工作的物体分类任务,建议采用统计本地化(SAL)方法,以便利这项工作的物体分类任务。SAL包括三个步骤:(1) 通过决定统计初步关注窗口选择,(2) 注意地图改进,(3) 矩形注意区域最终确定。SAL计算本地正方形窗口的软决定分数,并用它们来确定第1步中的突出区域。为了容纳各种大小和形状的物体,SAL改进初步结果,并在第2步中绘制一个更灵活形状的注意图。最后,SAL利用精细的注意地图和第3步的捆绑框规范,产生一个矩形注意区域。作为应用,我们采用E-PixelHop,这是基于连续的子空间学习(SSL)的物体分类解决办法,作为基线。我们应用SAL,以获得一个裁剪裁剪的和调整的注意区域作为替代投入。整个图像和注意区域的分类结果被结合,以达到最高分类精确度。CFAR-10数据集的实验是为了显示SAL辅助物体分类方法的优势。