We propose a deep learning strategy to estimate the mean curvature of two-dimensional implicit interfaces in the level-set method. Our approach is based on fitting feed-forward neural networks to synthetic data sets constructed from circular interfaces immersed in uniform grids of various resolutions. These multilayer perceptrons process the level-set values from mesh points next to the free boundary and output the dimensionless curvature at their closest locations on the interface. Accuracy analyses involving irregular interfaces, in both uniform and adaptive grids, show that our models are competitive with traditional numerical schemes in the $L^1$ and $L^2$ norms. In particular, our neural networks approximate curvature with comparable precision in coarse resolutions, when the interface features steep curvature regions, and when the number of iterations to reinitialize the level-set function is small. Although the conventional numerical approach is more robust than our framework, our results have unveiled the potential of machine learning for dealing with computational tasks where the level-set method is known to experience difficulties. We also establish that an application-dependent map of local resolutions to neural models can be devised to estimate mean curvature more effectively than a universal neural network.


翻译:我们提出了一个深层学习战略,以估计水平定制方法中二维隐含界面的平均值曲度。 我们的方法是,将进化向神经网络与合成数据集相匹配,这些合成数据集由嵌入各种分辨率统一网格的圆形界面组成。 这些多层透视器处理自由边界旁边的网格点的定值,并输出界面上最接近位置的无维曲线值。 涉及统一和适应性网格中非常规界面的精确分析表明,我们的模型与传统的数字方案具有竞争力,在$L1$和$L2$规范中具有竞争力。 特别是,我们的神经网络近似曲度,在粗度分辨率中具有相似的精确度,当界面特征为陡峭度区域,以及重新启用水平定值函数的迭代数小的时候,这些多层分数虽然常规的数值方法比我们的框架更坚固,但我们的结果揭示了在处理计算任务方面机械学习的潜力,因为人们知道水平定法方法会遇到困难。 我们还建立了一种基于本地分辨率的应用图,比普通分辨率网络能有效地估计神经模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员