Learning from demonstration (LfD) provides a convenient means to equip robots with dexterous skills when demonstration can be obtained in robot intrinsic coordinates. However, the problem of compounding errors in long and complex skills reduces its wide deployment. Since most such complex skills are composed of smaller movements that are combined, considering the target skill as a sequence of compact motor primitives seems reasonable. Here the problem that needs to be tackled is to ensure that a motor primitive ends in a state that allows the successful execution of the subsequent primitive. In this study, we focus on this problem by proposing to learn an explicit correction policy when the expected transition state between primitives is not achieved. The correction policy is itself learned via behavior cloning by the use of a state-of-the-art movement primitive learning architecture, Conditional Neural Motor Primitives (CNMPs). The learned correction policy is then able to produce diverse movement trajectories in a context dependent way. The advantage of the proposed system over learning the complete task as a single action is shown with a table-top setup in simulation, where an object has to be pushed through a corridor in two steps. Then, the applicability of the proposed method to bi-manual knotting in the real world is shown by equipping an upper-body humanoid robot with the skill of making knots over a bar in 3D space. The experiments show that the robot can perform successful knotting even when the faced correction cases are not part of the human demonstration set.


翻译:从演示中学习( LfD) 提供了一种方便的手段,让机器人在能够以机器人内在坐标获得演示时,能够掌握超模技能。然而,长期和复杂技能的复合错误问题本身会减少其广泛的部署。由于大多数这类复杂技能是由较小运动组成的,而考虑到目标技能是紧凑发动机原始工艺的序列,因此似乎是合理的。这里需要解决的问题是确保运动原始目的在能够成功实施随后原始技术的情况下能够成功实施。在本研究中,我们把重点放在这一问题上,提议在未实现预期的原始人之间的转型状态时学习明确的纠正政策。纠正政策本身是通过使用最先进的原始学习结构( Contaminal Neor Motor Primitives)来通过行为克隆来学习的。此后,学习的纠正政策能够产生不同的运动轨迹。拟议系统在学习完整任务时的优势是模拟中的桌面-台式设置,在此情况下,一个对象必须先通过一个实验室走廊进行行为克隆,然后使用最先进的原始学习结构,然后用最高级的机器人操作方式来展示一个真实的游戏。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Neural Grasp Distance Fields for Robot Manipulation
Arxiv
0+阅读 · 2022年11月4日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员