We formulate grasp learning as a neural field and present Neural Grasp Distance Fields (NGDF). Here, the input is a 6D pose of a robot end effector and output is a distance to a continuous manifold of valid grasps for an object. In contrast to current approaches that predict a set of discrete candidate grasps, the distance-based NGDF representation is easily interpreted as a cost, and minimizing this cost produces a successful grasp pose. This grasp distance cost can be incorporated directly into a trajectory optimizer for joint optimization with other costs such as trajectory smoothness and collision avoidance. During optimization, as the various costs are balanced and minimized, the grasp target is allowed to smoothly vary, as the learned grasp field is continuous. In simulation benchmarks with a Franka arm, we find that joint grasping and planning with NGDF outperforms baselines by 63% execution success while generalizing to unseen query poses and unseen object shapes. Project page: https://sites.google.com/view/neural-grasp-distance-fields.
翻译:我们作为神经外观和当前神经格拉斯普距离场(NDDF) 来制定抓取学习方法。 在这里, 输入是一个机器人终端效果器的 6D 形状, 输出是一个物体的连续的、 有效捕捉的方块的距离。 与目前预测一组离散的候选控制器的方法相比, 远程的 NDF 表示方式很容易被解释为一种成本, 并且将这一成本最小化产生一个成功的抓取姿势。 这种抓取距离成本可以直接纳入轨道优化器, 与轨迹平稳和避免碰撞等其他成本联合优化。 在优化过程中, 各种成本平衡和最小化, 允许抓取目标顺利变化, 因为所学的抓取场是连续的。 在与 Franka 手臂进行模拟时, 我们发现与 NDFDF 联合掌握和规划的基线在63% 执行成功率上比基准强63%, 同时对看不见的查询姿势和看不见的物体形状进行概括。 项目网页 : https://sites.gos.gole. gle. com/view/ nural-grales-grasp- graps- fore- fore- fel- fel- fel- fel- fiel- fiel- friel- fard- fard- fields。