An end-to-end (E2E) ASR model implicitly learns a prior Internal Language Model (ILM) from the training transcripts. To fuse an external LM using Bayes posterior theory, the log likelihood produced by the ILM has to be accurately estimated and subtracted. In this paper we propose two novel approaches to estimate the ILM based on Listen-Attend-Spell (LAS) framework. The first method is to replace the context vector of the LAS decoder at every time step with a vector that is learned with training transcripts. Furthermore, we propose another method that uses a lightweight feed-forward network to directly map query vector to context vector in a dynamic sense. Since the context vectors are learned by minimizing the perplexities on training transcripts, and their estimation is independent of encoder output, hence the ILMs are accurately learned for both methods. Experiments show that the ILMs achieve the lowest perplexity, indicating the efficacy of the proposed methods. In addition, they also significantly outperform the shallow fusion method, as well as two previously proposed ILM Estimation (ILME) approaches on several datasets.


翻译:一个端到端(E2E) ASR 模型隐含地从培训记录誊本中学习了先前的内部语言模型(ILM) 。 要使用Bayes 后传理论整合外部 LM, 就必须准确估计和减去 ILM 生成的日志概率。 在本文中, 我们提出基于 Liste- Attend- Spell (LAS) 框架估算 ILM 的两种新办法。 第一个方法是用培训记录誊本学习的矢量来取代LAS 解码器的上下文矢量。 此外, 我们提议了另一种方法, 即使用轻量的向向上网络, 直接将查询矢量定位到动态的上下文矢量。 由于上下文矢量通过最大限度地减少培训记录中的混杂度来学习, 其估计独立于编码输出, 因此这两种方法都准确学习了 ILMS 。 实验显示, ILMS 达到最小的易变度, 表明拟议方法的功效。 此外, 它们还明显地超越了一些浅聚方法, 以及先前提议的 ILM Estimtion (ME) 方法。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年12月20日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员