When humans perform contact-rich manipulation tasks, customized tools are often necessary and play an important role in simplifying the task. For instance, in our daily life, we use various utensils for handling food, such as knives, forks and spoons. Similarly, customized tools for robots may enable them to more easily perform a variety of tasks. Here, we present an end-to-end framework to automatically learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics simulators. Previous work approached this problem by introducing manually constructed priors that required detailed specification of object 3D model, grasp pose and task description to facilitate the search or optimization. In our approach, we instead only need to define the objective with respect to the task performance and enable learning a robust morphology by randomizing the task variations. The optimization is made tractable by casting this as a continual learning problem. We demonstrate the effectiveness of our method for designing new tools in several scenarios such as winding ropes, flipping a box and pushing peas onto a scoop in simulation. We also validate that the shapes discovered by our method help real robots succeed in these scenarios.
翻译:当人类执行接触丰富的操纵任务时,定制工具往往是必要的,并且在简化任务方面起着重要作用。例如,在我们日常生活中,我们使用各种工具处理食物,例如刀、叉和勺子。同样,为机器人定制的工具可以使他们更容易地执行各种任务。在这里,我们提出了一个端到端框架,通过利用不同的物理模拟器,自动学习接触丰富的操纵任务的工具形态。以前的工作通过引入手工制造的先质来解决这个问题,需要详细说明对象 3D 模型、抓住姿势和任务描述,以便利搜索或优化。在我们的做法中,我们只需要根据任务性能来界定目标,并通过随机调整任务变异来学习稳健的形态。优化可以通过将之作为持续学习问题来加以调整。我们展示了我们设计新工具的方法在几种情景中的有效性,例如刮线、翻盒子和在模拟中将豆子推向剪贴。我们还验证了我们的方法所发现的形状是否有助于真正的机器人在这些情景中取得成功。