Bimanual activities like coffee stirring, which require coordination of dual arms, are common in daily life and intractable to learn by robots. Adopting reinforcement learning to learn these tasks is a promising topic since it enables the robot to explore how dual arms coordinate together to accomplish the same task. However, this field has two main challenges: coordination mechanism and long-horizon task decomposition. Therefore, we propose the Mixline method to learn sub-tasks separately via the online algorithm and then compose them together based on the generated data through the offline algorithm. We constructed a learning environment based on the GPU-accelerated Isaac Gym. In our work, the bimanual robot successfully learned to grasp, hold and lift the spoon and cup, insert them together and stir the coffee. The proposed method has the potential to be extended to other long-horizon bimanual tasks.
翻译:需要双臂协调的咖啡搅拌等双臂活动在日常生活中很常见,难以由机器人学习。 采用强化学习来学习这些任务是一个很有希望的主题,因为它使机器人能够探索双臂如何协调来完成同样的任务。 但是,这个领域有两大挑战:协调机制和长视线任务分解。 因此,我们建议采用混合方法,通过在线算法分别学习次任务,然后根据产生的数据通过离线算法将它们组合在一起。 我们根据GPU加速的Isaac Gym 构建了一个学习环境。 在我们的工作中,双体机器人成功地学会了抓住、握起勺子和杯子,把它们一起插入并搅拌咖啡。 拟议的方法有可能扩大到其他长正弦双人任务。