Graph are a ubiquitous data representation, as they represent a flexible and compact representation. For instance, the 3D structure of RNA can be efficiently represented as $\textit{2.5D graphs}$, graphs whose nodes are nucleotides and edges represent chemical interactions. In this setting, we have biological evidence of the similarity between the edge types, as some chemical interactions are more similar than others. Machine learning on graphs have recently experienced a breakthrough with the introduction of Graph Neural Networks. This algorithm can be framed as a message passing algorithm between graph nodes over graph edges. These messages can depend on the edge type they are transmitted through, but no method currently constrains how a message is altered when the edge type changes. Motivated by the RNA use case, in this project we introduce a graph neural network layer which can leverage prior information about similarities between edges. We show that despite the theoretical appeal of including this similarity prior, the empirical performance is not enhanced on the tasks and datasets we include here.
翻译:图形是一种无处不在的数据代表, 因为它们代表着一个灵活和紧凑的表达式。 例如, RNA 的 3D 结构可以有效地以 $\ textit{ 2.5D graphs}$ 表示, 其节点为核分裂元素的图形和边缘代表化学相互作用。 在此背景下, 我们拥有边缘类型相似性的生物证据, 因为某些化学相互作用比其它类型更相似。 图表上的机器学习最近随着引入“ 神经网络” 而经历了突破。 这个算法可以被构建为在图形边缘之间传递的图形节点算法。 这些算法可以取决于它们所传递的边缘类型, 但是目前没有方法限制在边缘类型变化时如何更改信息。 受 RNA 使用此选项的驱动, 我们在此项目中引入了一个图形神经网络层, 它可以利用关于边缘之间相似性的先前信息。 我们显示, 尽管先前的理论吸引力包括这种相似性, 但这些实验性不会增强我们在这里包含的任务和数据集。