Distinguishing the automorphic equivalence of nodes in a graph plays an essential role in many scientific domains, e.g., computational biologist and social network analysis. However, existing graph neural networks (GNNs) fail to capture such an important property. To make GNN aware of automorphic equivalence, we first introduce a localized variant of this concept -- ego-centered automorphic equivalence (Ego-AE). Then, we design a novel variant of GNN, i.e., GRAPE, that uses learnable AE-aware aggregators to explicitly differentiate the Ego-AE of each node's neighbors with the aids of various subgraph templates. While the design of subgraph templates can be hard, we further propose a genetic algorithm to automatically search them from graph data. Moreover, we theoretically prove that GRAPE is expressive in terms of generating distinct representations for nodes with different Ego-AE features, which fills in a fundamental gap of existing GNN variants. Finally, we empirically validate our model on eight real-world graph data, including social network, e-commerce co-purchase network, and citation network, and show that it consistently outperforms existing GNNs. The source code is public available at https://github.com/tsinghua-fib-lab/GRAPE.


翻译:区分图表中节点的自动等同性在许多科学领域,例如计算生物学家和社会网络分析中发挥着必不可少的作用。然而,现有的图形神经网络(GNN)未能捕捉到如此重要的属性。为了使GNN意识到自动等同性,我们首先引入了这一概念的本地变体 -- -- 以自我为中心的自动等同(Ego-AE)。然后,我们设计了一个GNN(GRAPE)的新变体,即GRAPE,使用可学的 AE-aware聚合器将每个节点的邻居的Ego-AE与各种子图样板的辅助数据明确区分开来。虽然子图样板的设计可能很困难,但我们进一步提议了一种基因算法,以便从图表数据中自动搜索它们。此外,我们理论上证明,GRAPE在为具有不同 Ego-AE特征的节点提供独特的表达方式,填补了现有的GNNV变量的根本空白。最后,我们从经验上验证了我们关于八个真实世界图表数据的模型模型,包括社会网络、e-Com-com-comfi-comflical commas 以及现有的G-commastrubs 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
35+阅读 · 2021年1月27日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年9月25日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关论文
Arxiv
7+阅读 · 2021年7月5日
Arxiv
35+阅读 · 2021年1月27日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年9月25日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Top
微信扫码咨询专知VIP会员