Traditional methods for point forecasting in univariate random walks often fail to surpass naive benchmarks due to data unpredictability. This study introduces a novel forecasting method that fuses movement prediction (binary classification) with naive forecasts for accurate one-step-ahead point forecasting. The method's efficacy is demonstrated through theoretical analysis, simulations, and real-world data experiments. It reliably exceeds naive forecasts with movement prediction accuracies as low as 0.55, outperforming baseline models like ARIMA, linear regression, MLP, and LSTM networks in forecasting the S\&P 500 index and Bitcoin prices. This method is particularly advantageous when accurate point predictions are challenging but accurate movement predictions are attainable, translating movement predictions into point forecasts in random walk contexts.
翻译:暂无翻译