This study presents a two-step Lagrange-Galerkin scheme for the shallow water equations with a transmission boundary condition (TBC). Firstly, the experimental order of convergence of the scheme is shown to see the second-order accuracy in time. Secondly, the effect of the TBC on a simple domain is discussed; the artificial reflections are kept from the Dirichlet boundaries and removed significantly from the transmission boundaries. Thirdly, the scheme is applied to a complex practical domain, i.e., the Bay of Bengal region, which is non-convex and includes islands. The effect of the TBC is discussed again for the complex domain; the artificial reflections are removed significantly from transmission boundaries, which are set on open sea boundaries. Based on the numerical results, it is revealed that the scheme has the following properties; (i) the same advantages of Lagrange-Galerkin methods (the CFL-free robustness for convection-dominated problems and the symmetry of the matrices for the system of linear equations); (ii) second-order accuracy in time; (iii) mass preservation of the function for the water level from the reference height (until the contact with the transmission boundaries of the wave); and (iv) no significant artificial reflection from the transmission boundaries. The numerical results by the scheme are presented in this paper for the flat bottom topography of the domain. In the next part of this work, Part II, the scheme will be applied to rapidly varying bottom surfaces and a real bottom topography of the Bay of Bengal region.


翻译:此项研究为浅水方程式提供了一个带有传输边界条件的浅水界方程式(TBC)的两步 Lagrange-Galerkin方案。 首先,实验性汇合顺序在时间上显示为第二阶次准确性。 其次,讨论TBC对简单域的影响;人为反射来自Drichlet边界,从传输边界中大量去除。第三,这个办法适用于一个复杂的实际领域,即孟加拉湾地区,这是非电离层,包括岛屿。再次讨论TBC对复杂域的影响;人工反射从在开放海界上设置的传输边界中大大去除。根据数字结果,它揭示了TBC在简单域中的影响; (一) Lagrange-Galerkin方法的优点相同(对调控压问题不使用CLFLFL,对线性方程系统的矩阵的对称性。 (二) 时间的第二阶次准确性精确度; (三) 以开阔海线边界为设定的人工反射域域函数的质量保护度。 根据数值计算,从这个地面平面平面图的平面图,从这个平面图的反射至平面的平面图,从地面平面图的平面图的平面,从这个平面图的反向。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员