We investigate the changing nature of the frequency, magnitude and spatial extent of extreme temperatures in Ireland from 1931 to 2022. We develop an extreme value model that captures spatial and temporal non-stationarity in extreme daily maximum temperature data. We model the tails of the marginal variables using the generalised Pareto distribution and the spatial dependence of extreme events by a semi-parametric Brown-Resnick r-generalised Pareto process, with parameters of each model allowed to change over time. We use weather station observations for modelling extreme events since data from climate models (not conditioned on observational data) can over-smooth these events and have trends determined by the specific climate model configuration. However, climate models do provide valuable information about the detailed physiography over Ireland and the associated climate response. We propose novel methods which exploit the climate model data to overcome issues linked to the sparse and biased sampling of the observations. Our analysis identifies a temporal change in the marginal behaviour of extreme temperature events over the study domain, which is much larger than the change in mean temperature levels over this time window. We illustrate how these characteristics result in increased spatial coverage of the events that exceed critical temperatures.
翻译:本文分析了1931年至2022年期间爱尔兰极端温度事件出现的频率、幅度和空间范围变化情况。我们开发了一个极值模型用于捕捉极端日最高温度数据中的时空不稳定性。我们使用广义帕累托分布对边缘变量进行建模,并采用半参数布朗-雷斯尼克r-广义帕累托过程来建模极端事件的空间依赖性,并允许每个模型的参数随时间变化。我们使用天气站的观测数据来建模极端事件,因为不受观测数据限制的气候模型数据可能过度平滑这些事件,并且趋势由具体的气候模型配置所决定。然而,气候模型提供了有关爱尔兰详细地形和相关气候响应的宝贵信息。我们提出了新方法,利用气候模型数据克服了由于观测数据稀疏和偏差抽样导致的问题。我们的分析确定了极端温度事件边缘行为在研究领域内的时间变化,这大大超过了此时间窗口内平均温度水平的变化。我们说明了这些特征导致超出关键温度的事件的空间覆盖范围增加。