We investigate the changing nature of the frequency, magnitude and spatial extent of extreme temperatures in Ireland from 1931 to 2022. We develop an extreme value model that captures spatial and temporal non-stationarity in extreme daily maximum temperature data. We model the tails of the marginal variables using the generalised Pareto distribution and the spatial dependence of extreme events by a semi-parametric Brown-Resnick r-generalised Pareto process, with parameters of each model allowed to change over time. We use weather station observations for modelling extreme events since data from climate models (not conditioned on observational data) can over-smooth these events and have trends determined by the specific climate model configuration. However, climate models do provide valuable information about the detailed physiography over Ireland and the associated climate response. We propose novel methods which exploit the climate model data to overcome issues linked to the sparse and biased sampling of the observations. Our analysis identifies a temporal change in the marginal behaviour of extreme temperature events over the study domain, which is much larger than the change in mean temperature levels over this time window. We illustrate how these characteristics result in increased spatial coverage of the events that exceed critical temperatures.


翻译:本文分析了1931年至2022年期间爱尔兰极端温度事件出现的频率、幅度和空间范围变化情况。我们开发了一个极值模型用于捕捉极端日最高温度数据中的时空不稳定性。我们使用广义帕累托分布对边缘变量进行建模,并采用半参数布朗-雷斯尼克r-广义帕累托过程来建模极端事件的空间依赖性,并允许每个模型的参数随时间变化。我们使用天气站的观测数据来建模极端事件,因为不受观测数据限制的气候模型数据可能过度平滑这些事件,并且趋势由具体的气候模型配置所决定。然而,气候模型提供了有关爱尔兰详细地形和相关气候响应的宝贵信息。我们提出了新方法,利用气候模型数据克服了由于观测数据稀疏和偏差抽样导致的问题。我们的分析确定了极端温度事件边缘行为在研究领域内的时间变化,这大大超过了此时间窗口内平均温度水平的变化。我们说明了这些特征导致超出关键温度的事件的空间覆盖范围增加。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员