In this paper, we introduce a high-level controller synthesis framework that enables teams of heterogeneous agents to assist each other in resolving environmental conflicts that appear at runtime. This conflict resolution method is built upon temporal-logic-based reactive synthesis to guarantee safety and task completion under specific environment assumptions. In heterogeneous multi-agent systems, every agent is expected to complete its own tasks in service of a global team objective. However, at runtime, an agent may encounter un-modeled obstacles (e.g., doors or walls) that prevent it from achieving its own task. To address this problem, we take advantage of the capability of other heterogeneous agents to resolve the obstacle. A controller framework is proposed to redirect agents with the capability of resolving the appropriate obstacles to the required target when such a situation is detected. A set of case studies involving a bipedal robot Digit and a quadcopter are used to evaluate the controller performance in action. Additionally, we implement the proposed framework on a physical multi-agent robotic system to demonstrate its viability for real world applications.
翻译:在本文中,我们引入了一个高级控制器综合框架,使不同物剂小组能够互相协助解决在运行时出现的环境冲突。这种解决冲突的方法建立在基于时间的基于逻辑的被动合成基础上,以保证在特定环境假设下安全和完成任务。在多种物剂系统中,每个物剂都有望完成自己的任务,为全球团队的目标服务。然而,在运行时,一个物剂可能遇到非模型化障碍(如门或墙),使其无法完成自己的任务。为解决这一问题,我们利用其他不同物剂的能力来消除障碍。提议建立一个控制器框架,在发现这种情况时,将能够解决适当障碍以达到所需目标的物剂重新定位。使用一套涉及双型机器人Digit和四分立器的案例研究来评估控制器在行动中的表现。此外,我们实施了关于物理多剂机器人系统的拟议框架,以证明其在现实世界应用方面的可行性。