We investigate the power of counting in \textsc{Group Isomorphism}. We first leverage the count-free variant of the Weisfeiler--Leman Version I algorithm for groups (Brachter & Schweitzer, LICS 2020) in tandem with limited non-determinism and limited counting to improve the parallel complexity of isomorphism testing for several families of groups. In particular, we show the following: - Let $G_{1}$ and $G_{2}$ be class $2$ $p$-groups of exponent $p$ arising from the CFI and twisted CFI graphs (Cai, F\"urer, & Immerman, Combinatorica 1992) respectively, via Mekler's construction (J. Symb. Log., 1981). If the base graph $\Gamma_{0}$ is $3$-regular and connected, then we can distinguish $G_{1}$ from $G_{2}$ in $\beta_{1}\textsf{MAC}^{0}(\textsf{FOLL})$. This improves the upper bound of $\textsf{TC}^{1}$ from Brachter & Schweitzer (ibid). - Isomorphism testing between an arbitrary group $K$ and a group $G$ with an Abelian normal Hall subgroup whose complement is an $O(1)$-generated solvable group with solvability class poly $\log \log n$ is in $\beta_{1}\textsf{MAC}^{0}(\textsf{FO}($poly $\log \log n))$. This notably includes instances where the complement is an $O(1)$-generated nilpotent group. This problem was previously known to be in $\textsf{P}$ (Qiao, Sarma, & Tang, STACS 2011) and $\textsf{L}$ (Grochow & Levet, arXiv 2022). - Isomorphism testing between a direct product of simple groups and an arbitrary group is in $\beta_{1} \textsf{MAC}^{0}(\textsf{FOLL})$. This problem was previously shown to be in $\textsf{L}$ (Brachter & Schweitzer, ESA 2022). We finally show that the $q$-ary count-free pebble game is unable to distinguish even Abelian groups. This extends the result of Grochow & Levet (arXiv 2022), who established the result in the case of $q = 1$. The general theme is that some counting appears necessary to place \textsc{Group Isomorphism} into $\textsf{P}$.
翻译:{我们首先利用Weisfeiler-Leman 版本I算法(Brachter & Schweitzer, LICS 2020)的无计数变量,同时使用有限的非确定论和有限的计数,以提高若干组群的异形测试的平行复杂性。特别是,我们展示了以下内容: - 让 $=1美元和 $+2美元为2美元类。 由 CFI 和扭曲的 CFI 图形( Cai, F\urer, Immertarman, 1992) 分别生成的无计数变量。 如果基数 $\ Gamma_0美元是正常和连接的, 那么我们可以将 $+1美元 和 美元 美元组( 美元+%2} 以美元为基数 =1美元 和 美元为基数的基数 =xxx。