项目名称: 一类高维拟线性双曲型守恒律组初边值问题的研究
项目编号: No.11201467
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 屈爱芳
作者单位: 中国科学院武汉物理与数学研究所
项目金额: 22万元
中文摘要: Chaplygin 气体源于物理力学中对实际气体近似的一个常用模型,其高维弱解理论是国际偏微分方程研究领域的前沿和热点之一。本项目主要研究:1)Chaplygin气体Euler方程组在一个以两壁为边形成的角状区域上的二维黎曼初边值问题,分析边界条件对解的影响,构造整体解并分类;2)研究激波在后台阶上的绕射问题,分析该非定常问题的解在有限时间内的性态。本项目的特点:1)侧重于Euler方程初边值问题的弱解理论和波的结构的研究;2)注重带角点的非线性二阶退化椭圆型方程混合型边值问题的研究。本项目将综合利用特征分析法以及二阶椭圆方程的一些经典估计技巧等,并且紧密结合最新发展的有关理论和方法对问题进行研究,尤其注重物理背景与数学理论之间的联系。本项目的研究有助于探索更一般的高维守恒律方程组初边值问题的弱解理论。
中文关键词: 可压欧拉方程组;非线性波;波的相互作用;真空;Chaplygin气体
英文摘要: The Chaplygin gas is a good approximation to a real gas. The weak solution theory of it in multi-dimensional case is now an international hotspot in the research field of partial differential equations. This project mainly focuses on: 1) studying the two-dimensional Riemann initial-boundary value problems of Euler system for the Chaplygin gas in an angle domain bounded by two walls, the construction and classification of the global solutions; 2) The study of shock diffraction on a backward-facing step, analyzing the properties of solution of this unsteady problem in finite time. The character of this project is that: 1)focus on studying the theory of weak solutions and the structure of nonliear waves; 2) concerning the study of nonlinear second order elliptic equation with mixed boundary condition on a domain with an angle point. This project will utilize the methods of characteristic analysis, the classical estimate skills of second order elliptic equations, etc., and closely combining the theory and method developed latest to research these problems and also pay attention to the connection between physical background and mathematical results. The study of this project will help us to research the weak solution theory of more general initial-boundary value problems for multi-dimensional conservation laws.
英文关键词: Compressible Euler system;nonlinear waves;interaction of waves;vacuum;Chaplygin gas