Let $\Omega$ be a finite set of finitary operation symbols and let $\mathfrak V$ be a nontrivial variety of $\Omega$-algebras. Assume that for some set $\Gamma\subseteq\Omega$ of group operation symbols, all $\Omega$-algebras in $\mathfrak V$ are groups under the operations associated with the symbols in $\Gamma$. In other words, $\mathfrak V$ is assumed to be a nontrivial variety of expanded groups. In particular, $\mathfrak V$ can be a nontrivial variety of groups or rings. Our main result is that there are no post-quantum weakly pseudo-free families in $\mathfrak V$, even in the worst-case setting and/or the black-box model. In this paper, we restrict ourselves to families $(H_d\mathbin|d\in D)$ of computational and black-box $\Omega$-algebras (where $D\subseteq\{0,1\}^*$) such that for every $d\in D$, each element of $H_d$ is represented by a unique bit string of length polynomial in the length of $d$. We use straight-line programs to represent nontrivial relations between elements of $\Omega$-algebras in our main result. Note that under certain conditions, this result depends on the classification of finite simple groups. Also, we define and study some types of weak pseudo-freeness for families of computational and black-box $\Omega$-algebras.
翻译:$\ omega$ 是一个固定的固定操作符号组, 并且让 $mathfrak V$ 是一个非三角的变种 $\ Omega$- allgebra 。 具体来说, $\ Gamma\ subseteq\ Omega$ 组操作符号组中, $\ mathfrak V$ 的所有美元/ Omega$- algebra 都在与符号相关的操作组 $\ Gamamama 。 换句话说, $\ mathfrak V$ 是一个非三角的扩大组。 特别是, $\ mathfrak V 可以是非三角的组或环组 。 $\ more, $\ markeglegleglefrequem 的组合在最坏的设置和/ 黑箱模式中, 我们只能以美元计算和黑箱的值 $ $ $ 。 $\\\\\\\ ligreal deal makeme makeal makeal romax ex ex ex romac ex mess ex ex ex ex ex fol $x $ $ $x $x $x $x $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx