We present an algorithm for the maximum matching problem in dynamic (insertion-deletions) streams with *asymptotically optimal* space complexity: for any $n$-vertex graph, our algorithm with high probability outputs an $\alpha$-approximate matching in a single pass using $O(n^2/\alpha^3)$ bits of space. A long line of work on the dynamic streaming matching problem has reduced the gap between space upper and lower bounds first to $n^{o(1)}$ factors [Assadi-Khanna-Li-Yaroslavtsev; SODA 2016] and subsequently to $\text{polylog}{(n)}$ factors [Dark-Konrad; CCC 2020]. Our upper bound now matches the Dark-Konrad lower bound up to $O(1)$ factors, thus completing this research direction. Our approach consists of two main steps: we first (provably) identify a family of graphs, similar to the instances used in prior work to establish the lower bounds for this problem, as the only "hard" instances to focus on. These graphs include an induced subgraph which is both sparse and contains a large matching. We then design a dynamic streaming algorithm for this family of graphs which is more efficient than prior work. The key to this efficiency is a novel sketching method, which bypasses the typical loss of $\text{polylog}{(n)}$-factors in space compared to standard $L_0$-sampling primitives, and can be of independent interest in designing optimal algorithms for other streaming problems.


翻译:我们为动态( 插入- 删除) 流中的最大匹配问题提供了一种算法, 其空间复杂度为 asymptototop* 空间复杂度 : 对于任何 $n 的顶点图, 我们的高概率算法输出为$\ alpha$- 近似匹配, 使用 $O( \\\\ ALpha}3) 位元空间。 动态流匹配问题的一长行将空间上下界之间的距离缩小到 $@ o(1)} 。 我们的方法由两个主要步骤组成: 我们首先( 可以( ) 确定一个图表的类别, 类似于先前工作中用来确定这一问题下界的 美元 ; SODO 2016] 和 $\ textle/ pollylog { (n) } 系数。 我们高概率的算法将“ orliverallog_ } ( labliveralvalue) 和 labal lax labs lax 的亚程中, 我们只能选择一个更高级的缩缩缩的缩缩算方法。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员