Many Bayesian inference problems involve target distributions whose density functions are computationally expensive to evaluate. Replacing the target density with a local approximation based on a small number of carefully chosen density evaluations can significantly reduce the computational expense of Markov chain Monte Carlo (MCMC) sampling. Moreover, continual refinement of the local approximation can guarantee asymptotically exact sampling. We devise a new strategy for balancing the decay rate of the bias due to the approximation with that of the MCMC variance. We prove that the error of the resulting local approximation MCMC (LA-MCMC) algorithm decays at roughly the expected $1/\sqrt{T}$ rate, and we demonstrate this rate numerically. We also introduce an algorithmic parameter that guarantees convergence given very weak tail bounds, significantly strengthening previous convergence results. Finally, we apply LA-MCMC to a computationally intensive Bayesian inverse problem arising in groundwater hydrology.
翻译:许多Bayesian推论问题涉及密度功能计算成本高昂的分布,根据少量仔细选择的密度评价,以当地近似值取代目标密度,可以大大减少Markov链Monte Carlo(MCMC)取样的计算费用,此外,不断改进当地近似可保证无现效精确的取样。我们制定了新的战略,平衡偏差的衰减率,因为偏差与MCMC差的近似值。我们证明,由此产生的当地近似MCMC(LA-MCMC)算法的误差大约以预期的1美元/斯克特{T}美元的速度衰减,我们从数字上展示了这一比率。我们还引入了一种算法参数,保证了极弱尾线的趋同,大大加强了先前的趋同结果。最后,我们将LA-MCC用于计算在地下水水文学中产生的大量拜斯人反问题。