We study the performance of state-of-the-art human keypoint detectors in the context of close proximity human-robot interaction. The detection in this scenario is specific in that only a subset of body parts such as hands and torso are in the field of view. In particular, (i) we survey existing datasets with human pose annotation from the perspective of close proximity images and prepare and make publicly available a new Human in Close Proximity (HiCP) dataset; (ii) we quantitatively and qualitatively compare state-of-the-art human whole-body 2D keypoint detection methods (OpenPose, MMPose, AlphaPose, Detectron2) on this dataset; (iii) since accurate detection of hands and fingers is critical in applications with handovers, we evaluate the performance of the MediaPipe hand detector; (iv) we deploy the algorithms on a humanoid robot with an RGB-D camera on its head and evaluate the performance in 3D human keypoint detection. A motion capture system is used as reference. The best performing whole-body keypoint detectors in close proximity were MMPose and AlphaPose, but both had difficulty with finger detection. Thus, we propose a combination of MMPose or AlphaPose for the body and MediaPipe for the hands in a single framework providing the most accurate and robust detection. We also analyse the failure modes of individual detectors -- for example, to what extent the absence of the head of the person in the image degrades performance. Finally, we demonstrate the framework in a scenario where a humanoid robot interacting with a person uses the detected 3D keypoints for whole-body avoidance maneuvers.


翻译:在接近人体机器人相互作用的背景下,我们研究最先进的人类关键点探测器的性能。在这个假设情景中,检测的特点是,在这个数据集中,只有手和躯体等身体部位的子集才处于视野中。特别是,(一) 我们从接近图像的角度,调查现有带有人造形注释的数据集,从接近图像的角度,准备并公布一个新的近距离人体关键点探测器(HiCP)数据集;(二) 我们从数量和质量上比较最先进的人体全体 2D 关键点检测方法(OpenPose、MMPose、AlphaPose、Setron2),因为在这个数据集中,只有像手和手指这样的部分才处于观察领域。 (三) 由于在应用过程中,准确检测手和手指对手的性能进行评估。 (四) 我们把算法放在一个带有 RGB-D 整个相机的人体机器人机器人上,并在3D 人关键点检测中评估性能。 运动抓取系统用作参照。在近距离范围内,最精确的全机基点检测仪式检测器的检测仪式, 也用来分析一个图像的机型机型机体检测。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年12月24日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员