Stereo matching is crucial for binocular stereo vision. Existing methods mainly focus on simple disparity map fusion to improve stereo matching, which require multiple dense or sparse disparity maps. In this paper, we propose a simple yet novel scheme, termed feature disparity propagation, to improve general stereo matching based on matching cost volume and sparse matching feature points. Specifically, our scheme first calculates a reliable sparse disparity map by local feature matching, and then refines the disparity map by propagating reliable disparities to neighboring pixels in the matching cost domain. In addition, considering the gradient and multi-scale information of local disparity regions, we present a $\rho$-Census cost measure based on the well-known AD-Census, which guarantees the robustness of cost volume even without the cost aggregation step. Extensive experiments on Middlebury stereo benchmark V3 demonstrate that our scheme achieves promising performance comparable to state-of-the-art methods.
翻译:立体声相匹配对于望远镜立体视觉至关重要。 现有方法主要侧重于简单的差异图组合,以改善立体相匹配,这需要多重密度或稀有差异图。 在本文中,我们提出了一个简单而新颖的计划,称为地貌差异传播,目的是根据成本量和稀多相匹配特征点的匹配,改善普通立体相匹配。 具体而言,我们的计划首先通过本地特征匹配来计算可靠的稀有差异图,然后通过向相邻的像素宣传相匹配成本领域的可靠差异来完善差异图。 此外,考虑到地方差异区域的梯度和多尺度信息,我们根据众所周知的AD-Census, 提出了一个$rho$-Census的成本计量,保证成本量的稳健性,即使没有成本汇总步骤。 Midlebury立体基准V3的大规模实验表明,我们的计划取得了与最新方法相当的有前途的业绩。