A widely-used operation on graphs is local clustering, i.e., extracting a well-characterized community around a seed node without the need to process the whole graph. Recently local motif clustering has been proposed: it looks for a local cluster based on the distribution of motifs. Since this local clustering perspective is relatively new, most approaches proposed for it are extensions of statistical and numerical methods previously used for edge-based local clustering, while the available combinatorial approaches are still few and relatively simple. In this work, we build a hypergraph and a graph model which both represent the motif-distribution around the seed node. We solve these models using sophisticated combinatorial algorithms designed for (hyper)graph partitioning. In extensive experiments with the triangle motif, we observe that our algorithm computes communities with a motif conductance value being one third on average in comparison against the communities computed by the state-of-the-art tool MAPPR while being 6.3 times faster on average.
翻译:图表上广泛使用的操作是局部集成, 也就是说, 在不需要处理整个图表的情况下, 在种子节点周围提取一个精致的集成社区。 最近提出了本地集成: 它寻找基于元素分布的本地集成组。 由于本地集成观点相对较新, 大部分建议的方法是先前用于边基本地集成的统计和数字方法的延伸, 而现有的组合式方法仍然很少而且相对简单。 在这项工作中, 我们建立了一个高射图和图表模型模型, 两者都代表种子节点周围的分子分布。 我们用为( 节点) 绘图分割设计的复杂的组合算法来解决这些模型。 在三角模型的广泛实验中, 我们观察到, 我们的算法将具有运动行为价值的社区与由最先进的工具MAPPR计算出来的社区相比平均为三分之一, 平均速度为6.3倍 。