项目名称: 植物免疫信号通路新组分的分离和鉴定

项目编号: No.31300234

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 张杰

作者单位: 中国科学院微生物研究所

项目金额: 24万元

中文摘要: 在植物和微生物的相互作用中,植物识别病原微生物来源并且保守的病原相关分子模式PAMPs(Pathogen-Associated Molecular Patterns)激活PTI(PAMP-Triggered Immunity)。PTI是植物对病原微生物抗性最重要的组成部分,因为具有广谱性和持久性的特点而成为植物免疫研究的重要方向。对PTI信号传导机制的深入研究将为作物的抗病分子设计提供理论基础。近年来识别PAMP的免疫受体复合体和一些PTI信号通路中重要的细胞内激酶相继被分离,目前寻找这些激酶的下游底物成为PTI信号通路研究的重要方向。通过反向遗传学手段重点筛选模式植物中PTI信号传导通路下游的新组分,我们成功分离到了响应PAMP识别的一类转录因子PRP。本项目将综合运用分子生物学和生物化学手段,深入研究PRP参与PTI信号传导的分子机制,阐明PRP在植物免疫调控中的功能。

中文关键词: 植物;病原菌;免疫;磷酸化;

英文摘要: Plant cell-surface receptors recognize PAMPs (pathogen-associated molecular patterns) derived from pathogenic microbes to activate PAMP-triggered immunity (PTI). PTI plays central role in plant resistance against the majority of microbial pathogen. PTI confers broad and most durable resistance, thus comprehensive understanding of PTI signal transduction mechanisms will provide basis for the molecular design of crop resistance. Several PRR (pattern recognition receptor) complexes and a few important cytoplasmic kinases in PTI signaling pathway have been identified, but their downstream substrates are largely unknown. Due to the lack of linking components between these early signaling events and downstream defense responses, PTI signaling remains an incomplete signal transduction pathway. Reverse genetic approach was employed to identify novel candidates in PTI signaling pathway in model plant. Transcription factor PRP (Phosphorylated in Response to PAMP) was identified to respond to PAMP perception. In current study, we will further investigate the molecular mechanisms for PRP in PTI signal transduction. A combination of molecular and biochemical approaches will be used to clarify the role of PRP in plant immunity.

英文关键词: plant;pathogen;immunity;phosphorylation;

成为VIP会员查看完整内容
0

相关内容

《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
134+阅读 · 2021年9月20日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
专知会员服务
35+阅读 · 2021年2月20日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
使用深度学习,通过一个片段修饰进行分子优化
人工智能预测RNA和DNA结合位点,以加速药物发现
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员