This paper is devoted to the numerical resolution of McKean-Vlasov control problems via the class of mean-field neural networks introduced in our companion paper [25] in order to learn the solution on the Wasserstein space. We propose several algorithms either based on dynamic programming with control learning by policy or value iteration, or backward SDE from stochastic maximum principle with global or local loss functions. Extensive numerical results on different examples are presented to illustrate the accuracy of each of our eight algorithms. We discuss and compare the pros and cons of all the tested methods.
翻译:本文专门论述麦肯-弗拉索夫控制问题的数字解析,方法是通过我们的配套文件[25] 中引入的中位神经网络类别,以了解瓦西斯坦空间的解决方案。我们建议采用几种算法,一种是基于动态的编程,通过政策或价值迭代进行控制性学习,另一种是基于全球或地方损失功能的随机最大原则的后向SDE,另一种是基于后向的SDE,用全球或地方损失功能进行控制性学习。在各种例子中,提出了广泛的数字结果,以说明我们八种算法的准确性。我们讨论并比较了所有测试方法的利弊。