This paper introduces a new neural network based prior for real valued functions on $\mathbb R^d$ which, by construction, is more easily and cheaply scaled up in the domain dimension $d$ compared to the usual Karhunen-Lo\`eve function space prior. The new prior is a Gaussian neural network prior, where each weight and bias has an independent Gaussian prior, but with the key difference that the variances decrease in the width of the network in such a way that the resulting function is almost surely well defined in the limit of an infinite width network. We show that in a Bayesian treatment of inferring unknown functions, the induced posterior over functions is amenable to Monte Carlo sampling using Hilbert space Markov chain Monte Carlo (MCMC) methods. This type of MCMC is popular, e.g. in the Bayesian Inverse Problems literature, because it is stable under mesh refinement, i.e. the acceptance probability does not shrink to $0$ as more parameters of the function's prior are introduced, even ad infinitum. In numerical examples we demonstrate these stated competitive advantages over other function space priors. We also implement examples in Bayesian Reinforcement Learning to automate tasks from data and demonstrate, for the first time, stability of MCMC to mesh refinement for these type of problems.


翻译:本文引入了一个新的神经网络, 其基础是真正价值在$\mathbb R ⁇ d$上的功能。 与以前通常的Karhunen- Loç ⁇ eve 功能空间相比, 通过建造, 更容易和廉价地在域内提升 $d$d$ 。 新的先期是一个高斯神经网络, 之前每个重量和偏向都有一个独立的Gaussian 之前的Gaussian 神经网络, 但关键区别在于网络宽度的差异缩小, 使得由此形成的功能几乎肯定在一个无限宽度网络的极限中被很好地界定。 我们显示, 在巴耶斯处理推断未知功能时, 诱导的后方函数比重比重更轻, 与之前的Karte Carlo 系统( Monte MC ) 系统( Monte Carlo MC ) 系统( MC MC ) 方法相比, 比重更小。 这种模式的 MMC 十分流行, 因为它在微缩中比较,,,, 也就是 接受概率不会减缩为0. 0美元,,, 因为先前的参数的参数的参数比重。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员