This work combines multilevel Monte Carlo methods with importance sampling (IS) to estimate rare event quantities that can be expressed as the expectation of a Lipschitz observable of the solution to the McKean-Vlasov stochastic differential equation. We first extend the double loop Monte Carlo (DLMC) estimator, introduced in this context in our previous work (Ben Rached et al., 2022), to the multilevel setting. We formulate a novel multilevel DLMC (MLDLMC) estimator, and perform a comprehensive work-error analysis yielding new and improved complexity results. Crucially, we also devise an antithetic sampler to estimate level differences that guarantees reduced work complexity for the MLDLMC estimator compared with the single level DLMC estimator. To tackle rare events, we apply the same single level IS scheme, obtained via stochastic optimal control in (Ben Rached et al., 2022), over all levels of the MLDLMC estimator. Combining IS and MLDLMC not only reduces computational complexity by one order, but also drastically reduces the associated constant, ensuring feasible estimates for rare event quantities. We illustrate effectiveness of proposed MLDLMC estimator on the Kuramoto model from statistical physics with Lipschitz observables, confirming reduced complexity from $\mathcal{O}(TOL_r^{-4})$ for the single level DLMC estimator to $\mathcal{O}(TOL_r^{-3})$ while providing feasible estimation for rare event quantities up to the prescribed relative error tolerance $TOL_r$.
翻译:这项工作将多层次的蒙特卡洛(DLMC)方法与重要取样(IS)结合起来,估计稀有事件数量,以利普西茨观察麦肯-弗拉索夫(McKan-Vlasov)软体差异方程式的解决方案的预期值来表示。我们首先将我们先前工作中(Ben Rached等人,2022)在此背景下引入的双环蒙特卡洛(DLMC)测量仪推广到多层次设置。我们开发了一个新的多层次的DLMC(MLLLLMC)测量仪,并开展了一项全面的工作错误分析,得出新的和更高的复杂度结果。非常明显,我们还设计了一种抗异性检测器来估计水平的差异,保证MLLMC(DML)估计值与单一水平的DLMC(D)估算值相比,降低了MLMC(L)的复杂度;同时,我们用一个顺序将O值的计算复杂性从SLML=ML=ML=(ML)标准,同时将SLML=(O)的经常性的估算值从一个固定水平降低。