In this work we study the problem about learning a partial differential equation (PDE) from its solution data. PDEs of various types are used as examples to illustrate how much the solution data can reveal the PDE operator depending on the underlying operator and initial data. A data driven and data adaptive approach based on local regression and global consistency is proposed for stable PDE identification. Numerical experiments are provided to verify our analysis and demonstrate the performance of the proposed algorithms.
翻译:在这项工作中,我们研究了从解决方案数据中学习部分差异方程式(PDE)的问题。各种类型的PDE都被用作实例,以说明解决方案数据根据基本操作员和初始数据可以在多大程度上披露PDE操作员。建议以当地回归和全球一致性为基础,以数据驱动和数据适应性方法来稳定PDE识别。提供了数字实验,以核实我们的分析,并展示拟议算法的性能。