Firms and statistical agencies that publish or collect data face practical and legal requirements to protect the privacy of individuals. Increasingly, these organizations meet these standards by using publication mechanisms that satisfy differential privacy. We consider the problem of choosing such a mechanism so as to maximize the value of its output to end users. We show that this is a constrained information design problem, and characterize its solution. When the underlying database is drawn from a symmetric distribution -- for instance, if individuals' data are i.i.d. -- we show that the problem's dimensionality can be reduced, and that its solution belongs to a simpler class of mechanisms. When, in addition, data users have supermodular payoffs, we show that the simple geometric mechanism is always optimal by using a novel comparative static that ranks information structures according to their usefulness in supermodular decision problems.
翻译:出版或收集数据的公司和统计机构面临保护个人隐私的实际和法律要求。这些组织越来越多地通过使用满足不同隐私的出版机制达到这些标准。我们考虑了选择这样一个机制的问题,以便最大限度地增加其产出对终端用户的价值。我们表明这是一个受限的信息设计问题,并说明了其解决办法。当基础数据库从对称分布中提取时 -- -- 例如,如果个人数据是id. -- -- 我们表明,问题的维度可以减少,其解决办法属于更简单的机制。此外,当数据用户有超模式的回报时,我们表明,简单几何机制总是最理想的,它使用一种新型的比较静态,根据信息结构在超模式决定问题的有用性来排列信息结构。