We establish statistical properties of random-weighting methods in LASSO regression under different regularization parameters $\lambda_n$ and suitable regularity conditions. The random-weighting methods in view concern repeated optimization of a randomized objective function, motivated by the need for computational approximations to Bayesian posterior sampling. In the context of LASSO regression, we repeatedly assign analyst-drawn random weights to terms in the objective function (including the penalty terms), and optimize to obtain a sample of random-weighting estimators. We show that existing approaches have conditional model selection consistency and conditional asymptotic normality at different growth rates of $\lambda_n$ as $n \to \infty$. We propose an extension to the available random-weighting methods and establish that the resulting samples attain conditional sparse normality and conditional consistency in a growing-dimension setting. We find that random-weighting has both approximate-Bayesian and sampling-theory interpretations. Finally, we illustrate the proposed methodology via extensive simulation studies and a benchmark data example.


翻译:我们根据不同的正规化参数($\lambda_n$n)和适当的常规条件,在LASSO回归中确定随机加权方法的统计特性。考虑到随机加权方法涉及反复优化随机客观功能,其动机是需要为Bayesian远地点取样进行计算近似值。在LASSO回归中,我们反复指定分析师-拖动随机加权值为客观功能(包括惩罚条件)中的条件,并优化随机加权估计值样本。我们表明,现有方法具有有条件的模型选择一致性,并且以美元/lambda_n$作为美元/美元的不同增长率为条件。我们提议扩展现有的随机加权方法,并确定由此产生的样品在日益多样化的环境下达到有条件的稀疏常态和有条件的一致性。我们发现,随机加权既具有近似的Bayesian和抽样理论解释。最后,我们通过广泛的模拟研究和基准数据示例来说明拟议的方法。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员