We propose a simple yet powerful extension of Bayesian Additive Regression Trees which we name Hierarchical Embedded BART (HE-BART). The model allows for random effects to be included at the terminal node level of a set of regression trees, making HE-BART a non-parametric alternative to mixed effects models which avoids the need for the user to specify the structure of the random effects in the model, whilst maintaining the prediction and uncertainty calibration properties of standard BART. Using simulated and real-world examples, we demonstrate that this new extension yields superior predictions for many of the standard mixed effects models' example data sets, and yet still provides consistent estimates of the random effect variances. In a future version of this paper, we outline its use in larger, more advanced data sets and structures.
翻译:我们提出一个简单而有力的Bayesian Additive Regrestition 树的扩展,我们将它命名为等级嵌入式BART(HE-BART) 。 模型允许将随机效应纳入一组回归树的终端节点一级,使HE-BART成为混合效应模型的一个非参数性替代物,这种模型避免了用户需要指定模型中的随机效应结构,同时保持标准BART(BART)的预测和不确定性校准特性。 我们用模拟和真实世界的例子来证明,这一新扩展使得许多标准混合效应模型的样板数据集的预测效果更高,但仍然提供了随机效应差异的一致估计值。 在本文的未来版本中,我们概述了其在更大、更先进的数据集和结构中的使用情况。