项目名称: 高维稀疏统计模型中的变量选择与检验

项目编号: No.11471223

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 崔恒建

作者单位: 首都师范大学

项目金额: 65万元

中文摘要: 关于高维数据的变量选择方法目前还处在变量的选择与估计阶段,而缺乏统计检验功能,对于高维稀疏数据模型下的统计检验以及超高维数据下的快速变量降维方法也甚少。本项目拟在这两个统计学基础课题上开展深入研究,并有望取得突破性成果。具体我们将在带有附加信息的高维高维稀疏数据的变量选择方法上提出既能选择与估计,同时又能进行统计检验的新方法;提出高维稀疏数据的聚类降维新理论和技术;提出超高维稀疏数据下的扫描的新理论和方法。这些新的高维复杂数据的分析方法可应用于CT检测成像,GWAS等数据分析中去、为信息技术、生物医学等研究领域提供先进的数据分析方法,丰富高维复杂数据的统计理论和分析方法。

中文关键词: 变量选择;统计检验;高维模型;参数估计;稳健方法

英文摘要: It is well known that variables selection approach in high dimensional data analysis is in stage of the selecting variables and parameter estimation which is lack of statistical testing for some interested variables. Meanwhile, there are few statistical testing methods for the statistical model of high dimensional data with sparse case as well as fast dimension reduction method for ultra-high dimension data. This project will explore some new methods in these two fundamental statistical problems, and hopefully to establish some new methodologies and theory, which including three aspects as following. 1. Find out some new methods not only for selecting variables, but also for estimation, and at same time for statistical testing of interested variables in the high dimensional data with sparse case and auxiliary information. 2. Propose some new theory and techniques for cluster dimension reduction in high-dimensional data with sparse case. 3. Propose some new theory and methods for feature screening in ultra-high dimensional data with sparse case. These new methods for high dimensional and complicate data analysis can be used to image CT detection and imaging, GWAS data analysis and so on, it will also provide advanced data analysis methods in some application fields, such as information, biomedicine sciences, and enrich data analysis theory and methodologies.

英文关键词: Variable selection;Statistical test;High-dimensional model;Parametric estimation;Robust method

成为VIP会员查看完整内容
1

相关内容

专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
21+阅读 · 2021年9月23日
【干货书】R语言探索性数据分析,218页pdf
专知会员服务
61+阅读 · 2021年9月14日
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
21+阅读 · 2021年7月31日
【经典书】高维概率数据科学应用导论,301页pdf
专知会员服务
87+阅读 · 2021年6月17日
专知会员服务
144+阅读 · 2021年2月3日
【斯坦福经典书】统计学稀疏性:Lasso与泛化性,362页pdf
专知会员服务
35+阅读 · 2020年11月15日
【经典书】统计学,806页pdf,解锁数据的力量
专知会员服务
79+阅读 · 2020年8月12日
缺失数据统计分析,第三版,462页pdf
专知会员服务
108+阅读 · 2020年2月28日
漫谈统计学习之经验贝叶斯(Empirical Bayes)
PaperWeekly
2+阅读 · 2022年3月23日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
从 ICLR 2019 一览小样本学习最新进展!
AI科技评论
15+阅读 · 2019年6月9日
已删除
将门创投
13+阅读 · 2019年4月17日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
126+阅读 · 2020年9月6日
小贴士
相关主题
相关VIP内容
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
21+阅读 · 2021年9月23日
【干货书】R语言探索性数据分析,218页pdf
专知会员服务
61+阅读 · 2021年9月14日
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
21+阅读 · 2021年7月31日
【经典书】高维概率数据科学应用导论,301页pdf
专知会员服务
87+阅读 · 2021年6月17日
专知会员服务
144+阅读 · 2021年2月3日
【斯坦福经典书】统计学稀疏性:Lasso与泛化性,362页pdf
专知会员服务
35+阅读 · 2020年11月15日
【经典书】统计学,806页pdf,解锁数据的力量
专知会员服务
79+阅读 · 2020年8月12日
缺失数据统计分析,第三版,462页pdf
专知会员服务
108+阅读 · 2020年2月28日
相关资讯
漫谈统计学习之经验贝叶斯(Empirical Bayes)
PaperWeekly
2+阅读 · 2022年3月23日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
从 ICLR 2019 一览小样本学习最新进展!
AI科技评论
15+阅读 · 2019年6月9日
已删除
将门创投
13+阅读 · 2019年4月17日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员