In recent years, Artificial Neural Networks (ANNs) have been introduced in Structural Health Monitoring (SHM) systems. A semi-supervised method with a data-driven approach allows the ANN training on data acquired from an undamaged structural condition to detect structural damages. In standard approaches, after the training stage, a decision rule is manually defined to detect anomalous data. However, this process could be made automatic using machine learning methods, whom performances are maximised using hyperparameter optimization techniques. The paper proposes a semi-supervised method with a data-driven approach to detect structural anomalies. The methodology consists of: (i) a Variational Autoencoder (VAE) to approximate undamaged data distribution and (ii) a One-Class Support Vector Machine (OC-SVM) to discriminate different health conditions using damage sensitive features extracted from VAE's signal reconstruction. The method is applied to a scale steel structure that was tested in nine damage's scenarios by IASC-ASCE Structural Health Monitoring Task Group.
翻译:近年来,人工神经网络已被引入结构健康监测系统中。半监督方法采用基于数据的方法,让ANN在基于无损伤结构条件下采集的数据中训练,以便检测结构损伤。在标准方法中,培训阶段后人工定义一个决策规则来检测异常数据。然而,这一过程可以使用机器学习方法在超参数优化技术的帮助下自动化进行。本文提出一种基于数据驱动的半监督方法,以检测结构异常。这种方法包括:(i)使用变分自编码器(VAE)来近似无损伤数据分布,和(ii)使用从VAE信号重建中提取的损伤敏感特征来使用单分类支持向量机(OC-SVM)区分不同的健康状况。该方法应用于一个由IASC-ASCE结构健康监测工作组测试的比例钢结构,共测试了九种损伤情况。